

NAMIBIA UNIVERSITYOF SCIENCE AND TECHNOLOGY

FACULTY OF HEALTH, NATURAL RESOURCES AND APPLIED SCIENCES

DEPARTMENT OF NATURAL AND APPLIED SCIENCES

QUALIFICATION: BACHELOR OF SCIENCE (MAJOR AND MINOR)		
QUALIFICATION CODE: 07BOSC	LEVEL: 6	
COURSE NAME: ELECTRICAL CIRCUIT AND ELECTRONICS	COURSE CODE: ECE602S	
SESSION: NOVEMBER 2022	PAPER: THEORY	
DURATION: 3 HOURS	MARKS: 100	

FIRST OPPORTUNITY EXAMINATION QUESTION PAPER		
EXAMINER (S)	MR EMMANUEL EJEMBI	
MODERATOR:	PROF. SYLVANUS ONJEFU	

INSTRUCTIONS

- 1. Write all your answers in the answer booklet provided.
- 2. Read the whole question before answering.
- 3. Begin each question on a new page.

PERMISSIBLE MATERIALS

Scientific Calculator

THIS QUESTIONS PAPER CONSISTS OF 9 PAGES (Including this front page)

1.7 Which one of the following rectifiers was made with only one diode?	
a. Full wave	
b. Half wave	
c. Both a and b	
d. None of the above	
1.8 Which one of the following has two or more junction devices?	(2)
a. Thyristor b. Transistor c. Diodes d. None of these	
1.9 A transistor is said to be in quiescent state when	(2)
a. It is unbiased	
b. No Current flows through it	
c. Emitter junction is just biased equal to collector junction.	
d. No signal is applied to the input	
1.10 In a pnp transistor, the current carriers are	(2)
a Acceptor ions b. Donor ions c. Free electrons d. Holes	
1.11 Most of the majority carriers from the emitter	(2)
a. Recombine in the base	
b. Recombine in the emitter	
c. Pass through the base region to the collector	
d. None of these.	

SECTION B

QUESTION 2 [15]

2.1 State Kirchhoff's Current Law. (2)

- 2.2 A bridge circuit is shown in Figure 2.1. With the currents as marked, write (5)
- (a) Kirchhoff's current law at the four nodes and
- (b) Kirchhoffs voltage law around the loops abda, bcdb, and adca.

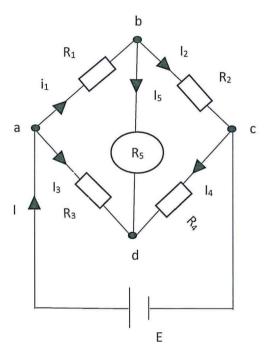


Figure 2.1.

2.3 For the bridge network shown in **Figure 2.2**, find the current in the 5 Ω resistor, and its direction, by using Thevenin's theorem. (8)

QUESTION 4 [15]

- 4.1 What do you understand by the term reverse biased in semiconductor. (2)
- 4.2 Sketch the reverse characteristics of a germanium and silicon p-n junction diode and describe the shapes of the characteristics drawn. (4)
- 4.3 Briefly explain half-wave rectifier diode. (4)
- 4.4 A 1 $k\Omega$ load resistor is connected to a half-wave rectifier circuit, shown in **Figure 4.2**. (5)

Calculate:

- a. The dc voltage V_{DC} and current I_{DC} ,
- b. The root-mean square current $I_{rms}\,$

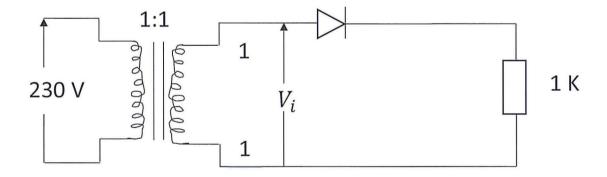


Figure 4.2.

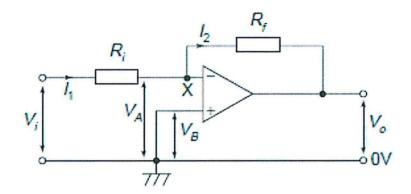


Figure 6.1.